
 
 

 

Abstract – An autonomous system was designed and 
constructed to traverse the hostile desert terrain in the 
DARPA Grand Challenge robotics competition. Our 
autonomous system used GPS measurements in conjunction 
with a laser range finder to determine passable terrain and to 
negotiate around natural and man-made obstacles on the 
route. The primary navigation portion of this system uses a 
scalable, heuristic array of data, and determines the preferred 
heading of the vehicle, factoring desired heading from a GPS 
sensor and obstacle data from a laser range finder. When 
implemented, this system demonstrated capability to pass 
stationary vehicles and navigate sloping terrain while 
negotiating around fences and towers between sequential GPS 
waypoints.  

I. INTRODUCTION 
  

The Grand Challenge, orchestrated by DARPA, was a 
competition to design and build an autonomous vehicle that 
could drive 150 miles over rough, off-road terrain. We 
designed a system that avoided obstacles while proceeding 
to each GPS waypoint to compete in this challenge.  

The basic approach taken for the autonomous vehicle 
was to construct a basic, simple autonomous system that 
could be enhanced as time permitted. A rapid prototyping 
approach was used, and ideas taken from extreme 
programming [1] were employed to insure that the code 
developed was robust and reliable.  Although there was a 
time constraint regarding completion of the challenge 
course, the philosophy taken was to begin with a system 
that operated at a modest, fixed velocity, adding increased 
velocity in open spaces as time permitted.  

The vehicle used was an Acura MDX, enhanced with the 
addition of Electronic Mobility Controls.  These controls 
were originally designed to assist handicapped drivers.  An 
analog interface was provided to the team to control 
steering, braking and acceleration.  

Our system sensors comprised a laser range finder and a 
GPS unit. The laser was used to detect obstacles while the 
GPS unit found our position on earth. These two inputs 
were then put into an algorithm to determine the best 
heading for the car, one that went to the next GPS waypoint 
while avoiding impediments.  
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 The algorithm we produced was simple and quick to 
integrate. The algorithm used a scalable data array, 
allowing for easy integration of new sensors, without 
having to modify large amounts of code. The algorithm 
was also extremely fast, the logic loop ran 4 times a 
second, pausing most of the interval to allow the car 
actuators to take effect. 
 Time constraints on the project forced us to implement 
the algorithm quickly. The algorithm had to be able to 
avoid desert obstacles while not deviating significantly 
from a set course of GPS waypoints. The algorithm also 
needed to be fast using minimal processing, to be suitable 
for embedded environments.  
 GPS waypoints, consisting of consecutive 
latitude/longitude pairs, are inputted into the system via 
CDROM. The system then navigates to each waypoint, 
until it comes within a specified radius of the waypoint. 
During navigation, the vehicle must stay within specified 
GPS boundaries as it progresses to each waypoint. Then the 
vehicle begins navigating to the next waypoint in the list. 
 For obstacle detection, the vehicle has a horizontally 
mounted, scanning laser rangefinder (the SICK LMS-291) 
mounted low on the vehicle front bumper and level so it 
will scan parallel to the ground. The unit scans horizontally 
in a plane, giving a distance measurement every 0.5 
degrees in its 180 degree scan, from which we can 
determine the range to any impediment, and thus avoid that 
obstacle. This allowed us to continually refresh the inputs 
so no memory or tracking of objects is required; any 
obstacles are shown on every scan.  
 For processing hardware, we constructed a standard, 
x86-based Linux system, with an off-the shelf value of 
approximately 300 USD. This provided more than enough 
computation power to execute the laser and GPS navigation 
loop in a matter of milliseconds. Measurement Computing 
digital to analog converters were used to create the voltage 
levels required by the Electronic Mobility Controls. 
 For GPS inputs, we used a standard commercial WAAS 
unit (the Garmin GPS16A) capable of determining absolute 
position, velocity, and altitude with 3 meters of accuracy.  
 

II.    RELATED WORK 
 

Much research has been performed on the topic of 
automated highways (see for example, [2]).  Fewer 
publications on autonomous cross-country vehicle 
operation exist, but it is impossible to cite all related 
publications here.  A few publications with similar 
approach will be cited. 
 In his MS thesis [3], Hellström describes obstacle 
avoidance for autonomous forest vehicles using Vector 
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Field Histograms [4], a technique based on the Virtual 
Force Field method [5].  This method is similar to the 
method we use, although no sensor fusion is described, and 
the algorithms were tested only in a MATLAB simulator.  
A comprehensive system for autonomous vehicle 
navigation was described in a Carnegie Mellon Univ. 
technical report [6].  Obstacle detection in a flat plane, 
segmented into intervals, was similar to our approach, but 
did not provide for direct fusion with GPS and was 
superceded in that work with 3-D detection.  Another 
publication [7] also describes 2-D laser range finding 
without sensor fusion. 

The University of Cincinnati's BEARCAT III 
autonomous vehicle served as a test bed for three obstacle 
avoidance systems, two sonar systems and one laser 
rangefinder system [8]. The approach using the laser 
rangefinder was similar to our approach and was similar to 
the system we implemented.  Wall and colleagues [9] 
described a low-cost autonomous vehicle platform that 
could host the algorithms described in this paper. 
 

III. DESCRIPTION OF THE AUTONOMOUS SOFTWARE 
OPERATION 

 
A field of trajectories is created as an array of all 

possible directions the vehicle could proceed.  Viabilities 
(ratings based on desirability of each path according to a 
sensor) are given to each trajectory in values from 0 to 1, 
where 0 is the worst and 1 is the best. The distance between 
trajectories is the smallest unit that the sensor with the least 
resolution can measure. In our case, the GPS viabilities 
have almost infinite resolution through interpolation. 
Therefore, the resolution of the laser determined the 
spacing of the trajectories; the laser measured every 0.5 
degrees, so one trajectory was placed every 0.5 degrees.  

  
Figure 1: A sample array of n trajectories with a spacing of θ between each 
trajectory  
 

 
Figure 2: An example set of trajectories with spacing θ  = 0.5° 
 
 Each trajectory is given a set of viabilities, one for each 
sensor based on how appropriate that trajectory is, 
according to the parameters of that sensor. If the laser 
detects an obstacle 2 meters away spanning a range of 

trajectories, then that particular range of trajectories will be 
given very low laser viabilities. However, detection of an 
obstacle 70 meters away would receive higher laser 
viabilities.  

At the beginning of each processing loop, we determine 
the heading from the vehicle’s current position to the target 
GPS waypoint.  
 
  

 
Figure 3: GPS viabilities vary from 1, toward the target, to 0.5 at a right angle from 

the target, and to 0 at 180 degrees away from the target 

 
The GPS viabilities (a numerical rating) of a trajectory 

begin at 1, the most desirable trajectory, then decrease 
proportionally, to 0 at 180 degrees from the best trajectory.  

In (1), γ is the viability, i is the trajectory number, � is 
the spacing in degrees between trajectories, and β is the 
desired trajectory according to GPS. 
 

(1) 
 
 
 For simplicity, we want each laser measurement to be 
rounded down to the greatest multiple of 5m below the 
measurement. This is done by dividing by the distance of 
the step (in our case by 5 m) and rounding the resulting 
number down to the greatest integer, then dividing by the 
number of steps to normalize the viabilities between 0 and 
1, as shown in Equation 2. This also helps avoid problems 
in situations where features on an obstacle confuse the 
sensors.  
 For each laser measurement, we calculate the viability γ 
using Equation (2) by rounding down to the greatest integer 
the product of the ratio of the measurement ρα to the 
maximum measurement ρmax and ξ (the step we want). 
 

 
(2) 



 
 

 

However, each single trajectory is often not sufficiently 
wide to accommodate the span of the vehicle. Therefore, 
the software examines nearby trajectories to determine the 
final laser viability of a trajectory. This can be 
accomplished by setting each final laser viability to the 
lowest viability of several trajectories to the left and right. 

(3) 
Each trajectory alpha can be assigned a 'total' viability 

compiled from the two sensor viabilities multiplied by 
respective weights κgps and κlaser. These weights allow the 
algorithm to be adjusted to give more influence to 
particular sensors. For example, if the vehicle tends to 
wander away from the given path, more weight on the GPS 
viability may be necessary. If the vehicle tends to hit 
obstacles, more laser weight may be needed. 

If more than two sensors are providing inputs to the 
autonomous system, the general formula is: 

(4) 
The weights are not required to be constant. Based on 

factors such as terrain or vehicle velocity, the weights may 
be changed. For example, if there are no obstacles directly 
ahead of the vehicle closer than 60 m. and the vehicle is 
already heading toward the GPS waypoint, the GPS weight 
is increased in order to prevent the vehicle from turning 
away from the waypoint because of high laser viabilities to 
the sides of the waypoint. Once the total viability of all 
trajectories has been computed, the trajectory with the 
highest total viability is the desired trajectory.  
 Since our vehicle did not move at more than 18.5 km/h 
(10 knots) autonomously at any time, a closed-loop steering 
controller was not necessary. Because the vehicle does not 
cover much ground before the system restarts the control 
loop, effects similar to a closed-loop are obtained as the 
software reevaluates the desired pathway and adjusts 
steering as required every 0.25 sec. However, in a higher 
speed vehicle, the autonomous system would finish the 
loop after much more ground had been covered, so a much 
finer-grained steering control would be required.  
 

IV. RESULTS 
 

In repeated tests in a parking lot empty of other vehicles, 
the vehicle successfully avoided 4' high obstacles (garbage 
cans) while navigating between GPS waypoints. With 
careful determination of the proper viability weights and 
calibration, success rates increased. At the official 
qualification rounds for the challenge we encountered an 
issue with steering adjustments on grass and dirt. However, 
after proper adjustments, the vehicle proceeded past eight 
of the fourteen obstacles on the course, successfully 
navigating over a hill, past a tower and around a vehicle 
situated immediately over the GPS waypoint. The car was 
seeded 10th of fifteen vehicles for the challenge itself.  The 

day before the challenge, our car was successfully able to 
proceed through the first 25 waypoints of the race.  
Unfortunately, on the day of the challenge our vehicle 
experienced some electrical problems while leaving the 
starting gate, and collided with a concrete barrier, which 
officially removed us from the challenge. Ultimately, the 
car performed as well as or better than a number of the 
fifteen vehicles.  It is difficult it compare our results with 
published literature, as we attempted to solve the specific 
problem posed by the DARPA Grand Challenge, while 
others have attempted to solve different problems. In 
comparison with other vehicles in the challenge, our 
vehicle completed over 50% of the qualifying course, 
ranking above 5 other vehicles with more complex and 
expensive systems. 

V.    CONCLUSIONS 
 

We demonstrated the feasibility of rapidly prototyping 
and implementing a complete functional autonomous 
system. The system was capable of navigating through 
basic desert terrain. The viability array handled distinct 
obstacles and rapid decision making between conflicting 
sensor inputs with ease.  
 Future research on this system should be performed to 
investigate techniques in adding a quasi-closed loop system 
for more precise steering at higher speeds. Furthermore, 
new research should concentrate on integrating multiple 
sensors (Lasers and vision system) to get a more 
comprehensive view of what is in front of the vehicle. An 
Inertial Measurement Unit would provide additional 
localization information.  A second GPS unit could provide 
heading information without requiring the vehicle to be in 
motion.  Moreover, refinements such as placing a corridor 
algorithm in the system to increase the GPS weight as you 
approach a corridor boundary may be effective.   Some 
limitations of the approach should be addressed in future 
versions. Any obstacles above or below the scan line 
cannot be detected .Additionally, passable slopes appear as 
obstacles.  
 In addition, the use of a floating point processor is not 
essential. With slight modifications, a floating point 
processor is not required. 
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